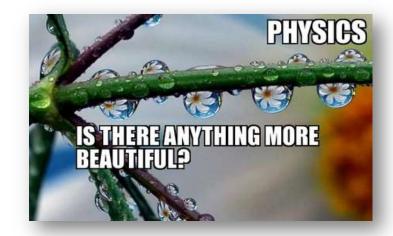
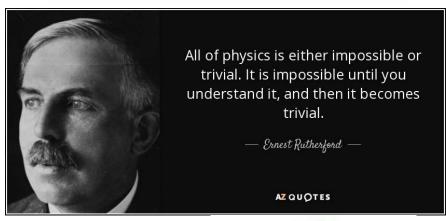
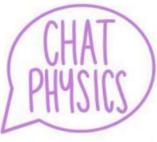
# IOP Institute of Physics


# THE ROYAL SOCIETY

ALevelPhysicsOnline.com


# **Transition Pack 2023-24**

**A-Level** 


**Physics** 











### **Contents**



- 1. A level AQA Physics course outline.
- 2. Becoming a better physicist Some successful strategies....and unsuccessful ones!
- 3. Knowledge to be consolidated.
- 4. Summer Tasks.

### **Welcome to A level Physics!**

So, you have chosen to do the most amazing subject... Physics!

A lot of people think it is hard, and it is, if you do not like it or have a passion for it and you do not work for it.

However, over the next two years we hope to inspire you in Physics and drive your passion for it. This, along with some hard work from yourself will mean you will leave this school not only with a fantastic qualification, but a better appreciation of the world around you, skills that you can use for the rest of your life and a problem solving, intuitive, creative brain.

This pack contains a program of activities and resources to prepare you to start A level in Physics in September. It is aimed to be used after you complete your GCSE throughout the remainder of the summer term and over the summer holidays to ensure you are ready to start your course in September.



SUBMIT ALL WORK TO MR MOORE AT <a href="mailto:SMOORE@SAWTRYVA.ORG">SMOORE@SAWTRYVA.ORG</a> BY 8<sup>th</sup> September 2023

# **Course outline**



This information is readily available on the AQA website at

http://www.aqa.org.uk/subjects/science/as-and-a-level/physics-7407-7408

# Subject content

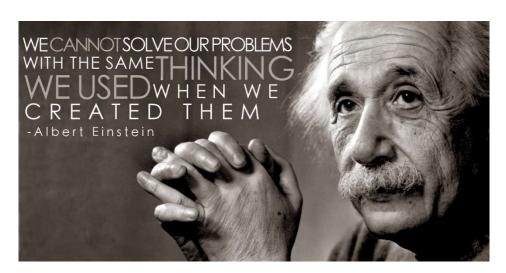
| Section | Content                               | Core / optional |
|---------|---------------------------------------|-----------------|
| 1       | Measurements and their errors         | Core            |
| 2       | Particles and radiation               | Core            |
| 3       | Waves                                 | Core            |
| 4       | Mechanics and materials               | Core            |
| 5       | Electricity                           | Core            |
| 6       | Further mechanics and thermal physics | Core            |
| 7       | Fields and their consequences         | Core            |
| 8       | Nuclear physics                       | Core            |
| 9       | Astrophysics                          | Optional        |
| 10      | Medical physics                       | Optional        |
| 11      | Engineering physics                   | Optional        |
| 12      | Turning points in physics             | Optional        |


### N.b. The optional modules are done on a class vote, with the most popular topic being taught.

### A-Level

| Paper 1                                                                                                | Paper 2                                                                                          | Paper 3                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What's assessed Section 1-5 and 6.1 (periodic motion)                                                  | What's assessed Section 6.2 (Thermal Physics), 7 and 8 Assumed knowledge of 1 to 6.1             | What's assessed Section A: Compulsory section: Practical skills and data analysis  Section B: Students enter for one of sections 9, 10, 11, 12 or 13 |  |
| <ul><li>Assessed</li><li>Written exam: 2 hours</li><li>85 marks marks</li><li>34% of A-Level</li></ul> | <ul><li>Assessed</li><li>Written exam: 2 hours</li><li>85 marks</li><li>34% of A-Level</li></ul> | <ul> <li>Assessed</li> <li>Written exam: 2 hours</li> <li>80 marks</li> <li>32% of A-Level</li> </ul>                                                |  |
| Questions 60 marks of short and long answer questions and 25 multiple choice questions on content      | answer questions and 25                                                                          | ,                                                                                                                                                    |  |
|                                                                                                        |                                                                                                  | 35 marks of short and long answer questions on optional topic.                                                                                       |  |

# Sawtry Village Academy


### Careers



Using your Physics A level can lead you to many careers, in the past 2 years the students have gone onto the following career pathways:

Astrophysics at Keele University, Physics at Surrey and Lincoln University, Engineering apprenticeships with Rolls Royce, Engineering degrees at Nottingham and De Montfort University, Accounting apprenticeships and degrees, Psychology at St Marys University and Nursing Apprenticeship in association with Addenbrookes Hospital, Veterinary Medicine at Surrey University.

As well as these you can use A level Physics to go into practically any industry or career pathway, including Medicine, Construction, Finance and IT.



### **Preparation Tasks**



### 1. Research a Physicist

- word limit 500 words ± 10%. (see requirement below)
- Choose at least one Physicist (ideally one you have not heard of) that is in a field of physics
  you are interested in.
- who are/were they and what did they discover or are working on.
- · How their science applies to everyday modern life today
- Why did you choose this Physicist?
- Include your references (ideally Harvard referencing style there are plenty of free tools online to help you do this)

There are lots on Twitter/Instagram that you can get in contact with (they do not have to be super famous or dead or have won a Nobel prize). Or if you do not want to talk to anyone directly you can find long lists of people online.

### 2. Practical activity - Expanding Universe

### **Equipment needed:**

- 6 assorted washers (or paper clips)
- 5 elastic bands/hairbands of the same thickness (and ideally of different lengths)
- Small stickers
- Ruler or tape measure
- Graph paper (or laptop with Microsoft Excel or similar)
- Sticky tape

### Method:



- 1. Make a model universe from rubber bands and washers, as shown above. Each washer represents a different galaxy.
- 2. Choose one washer to be the home galaxy, label it with a sticker. Label the other galaxies with letters A to E.



3. Copy the table below.

| Galaxy | Distance fr | Change in |           |
|--------|-------------|-----------|-----------|
|        | Initial     | Final     | distance/ |
| A      |             |           |           |
| В      |             |           |           |
| С      | 3           |           |           |
| D      |             |           |           |
| E      |             |           |           |

4. Measure the distance from the home galaxy to galaxy A. Repeat for the other galaxies and write the distance in the 'initial' column of the table

- 5. Expand the universe until it is twice its original length and then tape down the ends to a table or the floor to hold it in place.
- 6. Measure the new distance from the home to the other galaxies. Fill in the 'final' column of the table.
- 7. Subtract values in the second column from those in third column to calculate the change in distance.
- 8. Plot a graph of "change in distance" against "initial distance" and draw a line of best fit.
- 9. Repeat steps 4 to 8 but with a different galaxy as home galaxy. Compare the gradients of your two graphs. What effect does changing your home galaxy have?

### Using the practical to inform the Physics theory

In 1921, Astronomer Edwin Hubble was measuring the speeds of nearby galaxies when he noticed a puzzling thing. When he plotted the speed of the galaxy against its distance, the points from each of the galaxies in his sample seemed to follow an increasing 'straight' line.

This turned out to be the first important clue that the universe was expanding. Each galaxy was moving away from its neighbour. The farther away the galaxy was from the Milky Way, the faster it was moving away from us.

Below is a table of clusters of galaxies, which are known by the constellation in which direction they are found (e.g. the Virgo Cluster is seen in the direction of the constellation Virgo, although the galaxy cluster is vastly further away than the stars we see in the sky). For each galaxy the table lists the speed at which the galaxy is moving away from us and its distance in Megaparsecs (each Megaparsec is equal to 3.25 million LY).

| Cluster         | Velocity<br>(km/sec) | Distance<br>(Megaparsecs) |  |
|-----------------|----------------------|---------------------------|--|
| Virgo           | 1200                 | 15                        |  |
| Perseus         | 5400                 | 71                        |  |
| Coma            | 6600                 | 83                        |  |
| Hercules        | 10500                | 150                       |  |
| Ursa Major I    | 15600                | 313                       |  |
| Leo             | 19500                | 337                       |  |
| Corona Borealis | 21600                | 347                       |  |
| Gemini          | 23400                | 402                       |  |
| Bootes          | 39300                | 650                       |  |
| Ursa Major II   | 40200                | 653                       |  |
| Hydra           | 60600                | 831                       |  |



The table shows the distance and speed of 7 galaxies. The distances are given in mega parsecs (mpc). One mega parsec equals  $3.1 \times 10^{19}$  km. The velocity is given in kilometres per second. Note, the speed of light is 300,000 kilometres/sec.

- 1. Create a graph on either graph paper or Excel that presents the distance to each galaxy in Mpc on the horizontal axis, and the velocity in kilometres/sec on the vertical axis.
- 2. What is the range of distances to the galaxies in this sample in kilometres?
- 3. Does the data show that the distances and velocities of the galaxies are proportional, directly proportional or inversely proportional?
- 4. Draw a line of best fit that goes through the origin, or in Excel Spreadsheet, plot the data and use the 'Tools' to determine a best-fit line.
- 5. The **gradient** of the line in this plot is called **Hubble's Constant**. What is your estimate for Hubble's Constant from the data you used?

Hubble's law states that the speed of recession of a galaxy is proportional to the distance to the galaxy.

$$v \propto d$$

inserting the Hubble's constant:

$$v = Hd$$

We can combine this with an equation we have used before (speed = distance/time) to find time:

$$v = \frac{d}{t} = Hd$$
 (you can cancel the d's)

$$v = \frac{1}{t} = H$$
 (ignore the speed now)



$$\frac{1}{t} = H$$

(flip over to find t)

$$t = \frac{1}{H}$$

(ignore the speed now)

Therefore, the unit of 1 / H must be one of time.

Calculate the value of time of the universe using your Hubbles constant.

Calculate the time in seconds, days and years.

### Help:

- Do 1/your H value.
- Multiply by 3.1 x 10<sup>19</sup> km

### 3. Maths skills needed for A level Physics

Below is also a short list of some of the main maths skills you will need for A level Physics. Complete the maths skills questions at the end of the transition questions.

- Prefixes
- Ratios
- · Significant figures and rounding
- · Drawing graphs and lines of best fit
- Work out gradients
- Rearranging equations
- Using Standard form

### 4. Cornell note taking practice on scientific journals

Complete the Cornell note taking task for 1 week of the Warwick University Monday Journal club found here:

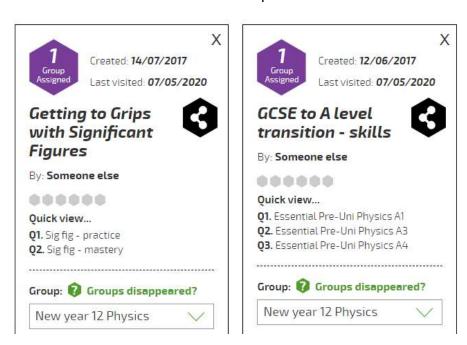
https://warwick.ac.uk/fac/sci/physics/outreach/journalclub/

Check your answers the following week to see how you got on.

There is no marks here for how accurate your answers are, you are gaining valuable research and notetaking skills, therefore the quality of your research and notes is what is taken into account.



### 5. ISAACPhysics sign up and transition work


If you have yet to make an account on ISAACPhysics please do so here:

### https://isaacphysics.org/login

Next, join the SVA new yr12 physics class using either the code **ZZD6K2** or by following the link below:

### https://isaacphysics.org/account?authToken=ZZD6K2

You have been set two boards to complete as shown here:



Last of all you need to sign up to have a personal ISAACphysics mentor here:

https://isaacphysics.org/pages/mentor scheme y12 home?stage=a level

### **Optional tasks**

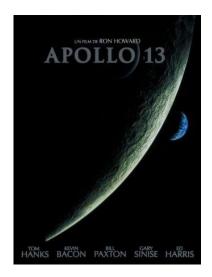
If you find yourself with spare time and wish to be more prepared for the upcoming A level course you can do any of the following, none of which you need to submit:

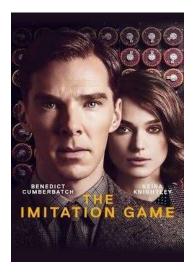
- 1. Work through the CGP Head start to A level physics book, currently free on Kindle.
- 2. Continue with the Warwick University Physics Journal club.
- 3. Attempt the 'Prepare for A level Physics' tasks at <a href="https://www.gcsephysicsonline.com/pre-a-level">https://www.gcsephysicsonline.com/pre-a-level</a>



- 4. Watch some physics related movies or read some physics fiction/non-fiction books and write a review. (see some recommendations below)
- 5. Complete any of the following course from the Open University:
  - a. <a href="https://www.open.edu/openlearn/science-maths-technology/particle-physics/content-section-0?active-tab=description-tab">https://www.open.edu/openlearn/science-maths-technology/particle-physics/content-section-0?active-tab=description-tab</a>
  - b. <a href="https://www.open.edu/openlearn/science-maths-technology/mathematics-science-and-technology/content-section-overview?active-tab=content-tab">https://www.open.edu/openlearn/science-maths-technology/mathematics-science-and-technology/content-section-overview?active-tab=content-tab</a>
  - c. <a href="https://www.open.edu/openlearn/science-maths-technology/scales-space-and-time/content-section-0?active-tab=content-tab">https://www.open.edu/openlearn/science-maths-technology/scales-space-and-time/content-section-0?active-tab=content-tab</a>

If you would like to know more or have any questions please talk to Mr Mayville


I hope you have a good break, stay safe and see you in September,


Mr. S Moore Head of Science

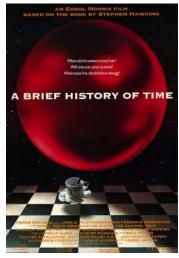

smoore@sawtryva.org

# **Movie Recommendations**





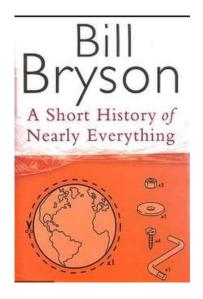


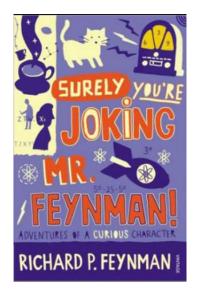


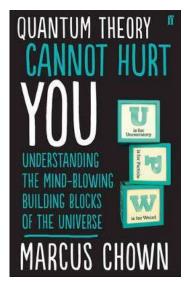


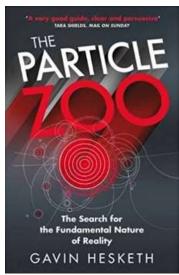


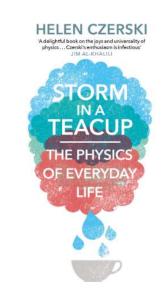


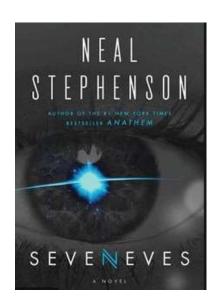



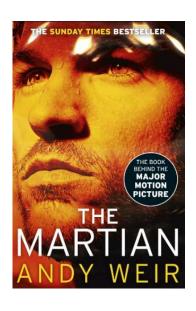



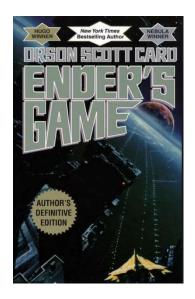


There are some great TV series and box sets available too! You might want to check out: Blue Planet, Planet Earth, Wonders of the Universe, Wonders of the Solar System, NASA TV and Shock & Awe – The Story of Electricity.

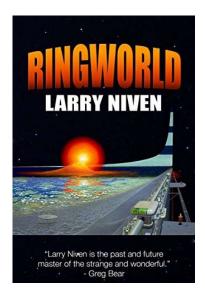

# **Book Recommendations**














# **Transition Maths and Practical skills**



### **Prefixes**

In Physics we have to deal with quantities from the very large to the very small. A prefix is something that goes in front of a unit and acts as a multiplier. This questions will give you practice at converting figures between prefixes.

| Symbol | Name  |           | What it means     | How to   | convert |
|--------|-------|-----------|-------------------|----------|---------|
| P      | peta  | $10^{15}$ | 1000000000000000  |          | ↓ x1000 |
| Т      | tera  | 1012      | 1000000000000     | ↑ ÷ 1000 | ↓ x1000 |
| G      | giga  | 109       | 1000000000        | ↑ ÷ 1000 | ↓ x1000 |
| M      | mega  | $10^{6}$  | 1000000           | ↑ ÷ 1000 | ↓ x1000 |
| k      | kilo  | $10^{3}$  | 1000              | ↑ ÷ 1000 | ↓ x1000 |
|        |       |           | 1                 | ↑ ÷ 1000 | ↓ x1000 |
| m      | milli | 10-3      | 0.001             | ↑ ÷ 1000 | ↓ x1000 |
| μ      | micro | 10-6      | 0.000001          | ↑ ÷ 1000 | ↓ x1000 |
| n      | nano  | 10-9      | 0.00000001        | ↑ ÷ 1000 | ↓ x1000 |
| p      | pico  | 10-12     | 0.00000000001     | ↑ ÷ 1000 | ↓ x1000 |
| f      | femto | 10-15     | 0.000000000000001 | ↑ ÷ 1000 |         |

Convert the figures into the prefixes required (in standard form).

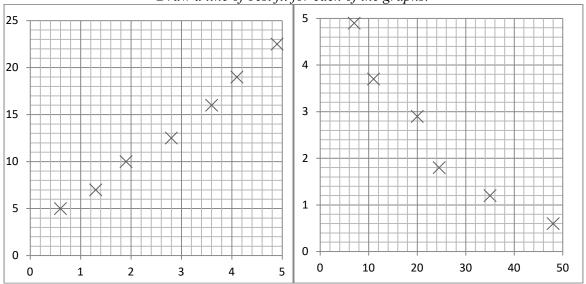
| S     | ms | μs | ns | ps |
|-------|----|----|----|----|
| 134.6 |    |    |    |    |
| 96.21 |    |    |    |    |
| 0.773 |    |    |    |    |

| m     | km | mm | Mm | Gm |
|-------|----|----|----|----|
| 12873 |    |    |    |    |
| 0.295 |    |    |    |    |
| 57.23 |    |    |    |    |

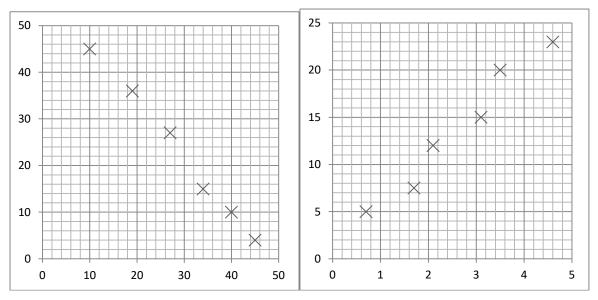


# Significant figures

For each value state how many significant figures it is stated to.

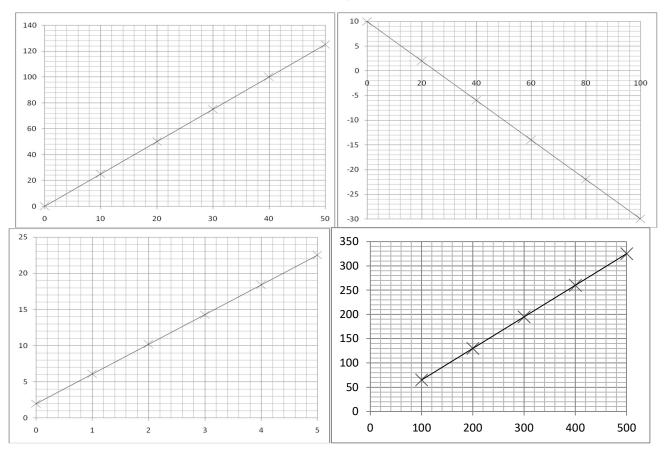

| Value | Sig<br>Figs | Value              | Sig<br>Figs | Value                   | Sig<br>Figs | Value                  | Sig<br>Figs |
|-------|-------------|--------------------|-------------|-------------------------|-------------|------------------------|-------------|
| 2     |             | 1066               |             | 1800.45                 |             | 0.07                   |             |
| 2.0   |             | 82.42              |             | 2.483 x 10 <sup>4</sup> |             | 69324.8                |             |
| 2.00  |             | 750000             |             | 2.483                   |             | 0.0063                 |             |
| 0.136 |             | 310                |             | 5906.4291               |             | 9.81 x 10 <sup>4</sup> |             |
| 0.34  |             | $3.10 \times 10^2$ |             | 200000                  |             | 6717                   |             |

Add the values below then write the answer to the appropriate number of significant figures


| Value 1 | Value 2 | Value 3 | Total Value | Total to correct sig figs |
|---------|---------|---------|-------------|---------------------------|
| 51.4    | 1.67    | 3.23    |             |                           |
| 7146    | -32.54  | 12.8    |             |                           |
| 20.8    | 18.72   | 0.851   |             |                           |
| 1.4693  | 10.18   | -1.062  |             |                           |

# **Lines of best fit**

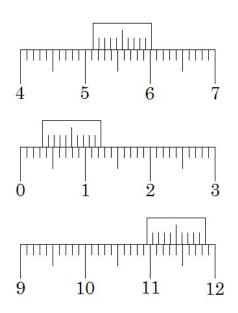
Draw a line of best fit for each of the graphs.

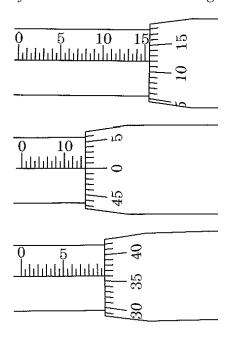







### **Gradients**


Calculate the gradients of the graphs below = difference in y/difference in x (think about y=mx+c from maths).






### **Vernier calipers and micrometers**

State the reading on the Vernier Calipers to the left and the micrometers to the right.



